Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3412, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649356

RESUMEN

Postnatal development of the gastrointestinal tract involves the establishment of the commensal microbiota, the acquisition of immune tolerance via a balanced immune cell composition, and maturation of the intestinal epithelium. While studies have uncovered an interplay between the first two, less is known about the role of the maturing epithelium. Here we show that intestinal-epithelial intrinsic expression of lysine-specific demethylase 1A (LSD1) is necessary for the postnatal maturation of intestinal epithelium and maintenance of this developed state during adulthood. Using microbiota-depleted mice, we find plasma cells, innate lymphoid cells (ILCs), and a specific myeloid population to depend on LSD1-controlled epithelial maturation. We propose that LSD1 controls the expression of epithelial-derived chemokines, such as Cxcl16, and that this is a mode of action for this epithelial-immune cell interplay in local ILC2s but not ILC3s. Together, our findings suggest that the maturing epithelium plays a dominant role in regulating the local immune cell composition, thereby contributing to gut homeostasis.

2.
Cell Rep ; 43(2): 113684, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38261511

RESUMEN

Viral mimicry describes the immune response induced by endogenous stimuli such as double-stranded RNA (dsRNA) from endogenous retroelements. Activation of viral mimicry has the potential to kill cancer cells or augment anti-tumor immune responses. Here, we systematically identify mechanisms of viral mimicry adaptation associated with cancer cell dependencies. Among the top hits is the RNA decay protein XRN1 as an essential gene for the survival of a subset of cancer cell lines. XRN1 dependency is mediated by mitochondrial antiviral signaling protein and protein kinase R activation and is associated with higher levels of cytosolic dsRNA, higher levels of a subset of Alus capable of forming dsRNA, and higher interferon-stimulated gene expression, indicating that cells die due to induction of viral mimicry. Furthermore, dsRNA-inducing drugs such as 5-aza-2'-deoxycytidine and palbociclib can generate a synthetic dependency on XRN1 in cells initially resistant to XRN1 knockout. These results indicate that XRN1 is a promising target for future cancer therapeutics.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Línea Celular , Citosol , Decitabina , Exonucleasas , Neoplasias/genética , ARN Bicatenario , Exorribonucleasas , Proteínas Asociadas a Microtúbulos
3.
Front Immunol ; 14: 1243528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869014

RESUMEN

Intestinal epithelial homeostasis is maintained by intrinsic and extrinsic signals. The extrinsic signals include those provided by mesenchymal cell populations that surround intestinal crypts and is further facilitated by the extracellular matrix (ECM), which is modulated by proteases such as matrix metalloproteinases (MMPs). Extrinsic signals ensure an appropriate balance between intestinal epithelial proliferation and differentiation. This study explores the role of MMP17, which is preferentially expressed by smooth muscle cells in the intestine, in intestinal homeostasis and during immunity to infection. Mice lacking MMP17 expressed high levels of goblet-cell associated genes and proteins, such as CLCA1 and RELM-ß, which are normally associated with immune responses to infection. Nevertheless, Mmp17 KO mice did not have altered resistance during a bacterial Citrobacter rodentium infection. However, when challenged with a low dose of the helminth Trichuris muris, Mmp17 KO mice had increased resistance, without a clear role for an altered immune response during infection. Mechanistically, we did not find changes in traditional modulators of goblet cell effectors such as the NOTCH pathway or specific cytokines. We found MMP17 expression in smooth muscle cells as well as lamina propria cells such as macrophages. Together, our data suggest that MMP17 extrinsically alters goblet cell maturation which is sufficient to alter clearance in a helminth infection model.


Asunto(s)
Metaloproteinasa 17 de la Matriz , Tricuriasis , Animales , Ratones , Colon , Células Caliciformes/metabolismo , Metaloproteinasa 17 de la Matriz/metabolismo , Infección Persistente , Trichuris
4.
Proteomes ; 11(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36648961

RESUMEN

Colorectal cancer (CRC) is one of the most prevalent cancers, driven by several factors including deregulations in intracellular signalling pathways. Small extracellular vesicles (sEVs) are nanosized protein-packaged particles released from cells, which are present in liquid biopsies. Here, we characterised the proteome landscape of sEVs and their cells of origin in three CRC cell lines HCT116, HT29 and SW620 to explore molecular traits that could be exploited as cancer biomarker candidates and how intracellular signalling can be assessed by sEV analysis instead of directly obtaining the cell of origin itself. Our findings revealed that sEV cargo clearly reflects its cell of origin with proteins of the PI3K-AKT pathway highly represented in sEVs. Proteins known to be involved in CRC were detected in both cells and sEVs including KRAS, ARAF, mTOR, PDPK1 and MAPK1, while TGFB1 and TGFBR2, known to be key players in epithelial cancer carcinogenesis, were found to be enriched in sEVs. Furthermore, the phosphopeptide-enriched profiling of cell lysates demonstrated a distinct pattern between cell lines and highlighted potential phosphoproteomic targets to be investigated in sEVs. The total proteomic and phosphoproteomics profiles described in the current work can serve as a source to identify candidates for cancer biomarkers that can potentially be assessed from liquid biopsies.

5.
Trends Cancer ; 9(1): 55-68, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216729

RESUMEN

Endogenous retroelements are DNA sequences which can duplicate and move to new locations in the genome. Actively moving endogenous retroelements can be disruptive to the host, and their expression is therefore often repressed. Interestingly, drugs that disrupt the repression of endogenous retroelements show promise for treating cancer. Expressed endogenous retroelements can activate innate immune receptors that activate the antiviral response, potentially leading to the death of cancer cells. We discuss disruptions to cellular processes which can lead to activation of the antiviral state from endogenous retroelements, and present the 'fire alarm hypothesis', where we argue that endogenous retroelements act as alarms for disruptions to these cellular processes. Furthermore, we discuss the properties of endogenous retroelements which make them suitable as alarms.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Retroelementos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antivirales , Homeostasis/genética
6.
Sci Immunol ; 7(71): eabl6543, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559665

RESUMEN

The intestinal tract is a common site for various types of infections including viruses, bacteria, and helminths, each requiring specific modes of immune defense. The intestinal epithelium has a pivotal role in both immune initiation and effector stages, which are coordinated by lymphocyte cytokines such as IFNγ, IL-13, and IL-22. Here, we studied intestinal epithelial immune responses using organoid image analysis based on a convolutional neural network, transcriptomic analysis, and in vivo infection models. We found that IL-13 and IL-22 both induce genes associated with goblet cells, but the resulting goblet cell phenotypes are dichotomous. Moreover, only IL-13-driven goblet cells are associated with classical NOTCH signaling. We further showed that IL-13 induces the bone morphogenetic protein (BMP) pathway, which acts in a negative feedback loop on immune type 2-driven tuft cell hyperplasia. This is associated with inhibiting Sox4 expression to putatively limit the tuft cell progenitor population. Blocking ALK2, a BMP receptor, with the inhibitor dorsomorphin homolog 1 (DMH1) interrupted the feedback loop, resulting in greater tuft cell numbers both in vitro and in vivo after infection with Nippostrongylus brasiliensis. Together, this investigation of cytokine effector responses revealed an unexpected and critical role for the BMP pathway in regulating type 2 immunity, which can be exploited to tailor epithelial immune responses.


Asunto(s)
Proteínas Morfogenéticas Óseas , Hiperplasia , Interleucina-13 , Mucosa Intestinal , Proteínas Morfogenéticas Óseas/metabolismo , Retroalimentación , Humanos , Hiperplasia/inmunología , Interleucina-13/inmunología , Factores de Transcripción SOXC/metabolismo , Infecciones por Strongylida
7.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34779829

RESUMEN

Helminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations. In vitro, using small intestinal organoids, we found that excretory/secretory products (HpES) from Heligmosomoides polygyrus blocked the effects of IL-4/13, inhibiting tuft and goblet cell gene expression and expansion, and inducing spheroid growth characteristic of fetal epithelium and homeostatic repair. Similar outcomes were seen in organoids exposed to parasite larvae. In vivo, H. polygyrus infection inhibited tuft cell responses to heterologous Nippostrongylus brasiliensis infection or succinate, and HpES also reduced succinate-stimulated tuft cell expansion. Our results demonstrate that helminth parasites reshape their intestinal environment in a novel strategy for undermining the host protective response.


Asunto(s)
Células Epiteliales/metabolismo , Células Caliciformes/metabolismo , Intestino Delgado/citología , Organoides/metabolismo , Infecciones por Strongylida/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Epiteliales/parasitología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células Caliciformes/parasitología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/farmacología , Interacciones Huésped-Parásitos , Interleucina-13/farmacología , Interleucina-4/farmacología , Intestino Delgado/parasitología , Ratones Endogámicos C57BL , Nematospiroides dubius/metabolismo , Nematospiroides dubius/fisiología , Nippostrongylus/metabolismo , Nippostrongylus/fisiología , Organoides/citología , Organoides/parasitología , Infecciones por Strongylida/parasitología , Ácido Succínico/farmacología , Transcriptoma/efectos de los fármacos
8.
Nat Commun ; 12(1): 6741, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795242

RESUMEN

Smooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle cells may have. Here, we show that smooth muscle cells may be the dominant suppliers of BMP antagonists, which are niche factors essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the membrane-bound matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle cells, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we propose that MMP17 affects intestinal epithelial reprogramming after damage indirectly by cleaving diffusible factor(s) such as the matricellular protein PERIOSTIN. Together, we identify an important signaling axis that establishes a role for smooth muscle cells as modulators of intestinal epithelial regeneration and the intestinal stem cell niche.


Asunto(s)
Metaloproteinasa 17 de la Matriz/metabolismo , Músculo Liso/metabolismo , Regeneración/fisiología , Nicho de Células Madre/fisiología , Animales , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/patología , Transducción de Señal/fisiología , Células Madre/metabolismo
9.
Curr Issues Mol Biol ; 43(1): 286-300, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199766

RESUMEN

Bladder cancer (BC) is currently diagnosed and monitored by cystoscopy, a costly and invasive procedure. Potential biomarkers in urine, blood, and, more recently, extracellular vesicles (EVs), have been explored as non-invasive alternatives for diagnosis and surveillance of BC. EVs are nanovesicles secreted by most cell types containing diverse molecular cargo, including different types of small RNAs, such as microRNA (miRNA). In this study, we performed next-generation sequencing of EV-contained miRNA isolated from urine and serum of 41 patients with non-muscle invasive BC (27 stage Ta, 14 stage T1) and 15 non-cancer patients (NCP) with benign cystoscopy findings. MiRNA sequencing was also performed on serum supernatant samples for T1 patients. To identify potential BC-specific biomarkers, expression levels of miRNA in presurgery samples were compared to those at postsurgery check-ups, and to NCPs. Results showed that two miRNAs, urinary EV-contained miR-451a and miR-486-5p, were significantly upregulated in presurgery samples from T1 patients compared to postsurgery check-up samples. This was confirmed in a replica EV/RNA isolation and sequencing run of 10 T1 patients from the primary run; however, analyses revealed no differential expression of miRNAs in serum EVs, serum supernatant, or when comparing BC patients to NCPs. This is the first study to investigate EV-containing miRNA sequencing in pre- and postsurgery BC patient samples and our findings suggest that urinary EV-contained miR-451a and miR-486-5p may be potential biomarkers for recurrence-free survival of BC patients with stage T1 disease.


Asunto(s)
Biomarcadores de Tumor/genética , Vesículas Extracelulares/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Vejiga Urinaria/genética , Anciano , Anciano de 80 o más Años , Apoptosis/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/orina , Diferenciación Celular/genética , Femenino , Ontología de Genes , Humanos , Masculino , MicroARNs/sangre , MicroARNs/orina , Persona de Mediana Edad , Transducción de Señal/genética , Neoplasias de la Vejiga Urinaria/cirugía
10.
PLoS Pathog ; 17(3): e1009476, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788902

RESUMEN

Infectious and inflammatory diseases in the intestine remain a serious threat for patients world-wide. Reprogramming of the intestinal epithelium towards a protective effector state is important to manage inflammation and immunity and can be therapeutically targeted. The role of epigenetic regulatory enzymes within these processes is not yet defined. Here, we use a mouse model that has an intestinal-epithelial specific deletion of the histone demethylase Lsd1 (cKO mice), which maintains the epithelium in a fixed reparative state. Challenge of cKO mice with bacteria-induced colitis or a helminth infection model both resulted in increased pathogenesis. Mechanistically, we discovered that LSD1 is important for goblet cell maturation and goblet-cell effector molecules such as RELMß. We propose that this may be in part mediated by directly controlling genes that facilitate cytoskeletal organization, which is important in goblet cell biology. This study therefore identifies intestinal-epithelial epigenetic regulation by LSD1 as a critical element in host protection from infection.


Asunto(s)
Infecciones por Enterobacteriaceae/inmunología , Células Caliciformes/inmunología , Histona Demetilasas/inmunología , Mucosa Intestinal/metabolismo , Tricuriasis/inmunología , Animales , Citrobacter rodentium , Células Caliciformes/metabolismo , Histona Demetilasas/metabolismo , Mucosa Intestinal/inmunología , Ratones , Ratones Noqueados , Trichuris
11.
Sci Adv ; 6(37)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917713

RESUMEN

Intestinal epithelial homeostasis is maintained by adult intestinal stem cells, which, alongside Paneth cells, appear after birth in the neonatal period. We aimed to identify regulators of neonatal intestinal epithelial development by testing a small library of epigenetic modifier inhibitors in Paneth cell-skewed organoid cultures. We found that lysine-specific demethylase 1A (Kdm1a/Lsd1) is absolutely required for Paneth cell differentiation. Lsd1-deficient crypts, devoid of Paneth cells, are still able to form organoids without a requirement of exogenous or endogenous Wnt. Mechanistically, we find that LSD1 enzymatically represses genes that are normally expressed only in fetal and neonatal epithelium. This gene profile is similar to what is seen in repairing epithelium, and we find that Lsd1-deficient epithelium has superior regenerative capacities after irradiation injury. In summary, we found an important regulator of neonatal intestinal development and identified a druggable target to reprogram intestinal epithelium toward a reparative state.


Asunto(s)
Mucosa Intestinal , Células de Paneth , Diferenciación Celular/genética , Histona Demetilasas/genética , Humanos , Recién Nacido , Organoides
12.
Front Cell Dev Biol ; 8: 618552, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33575256

RESUMEN

Intestinal organoids are an excellent model to study epithelial biology. Yet, the selection of analytical tools to accurately quantify heterogeneous organoid cultures remains limited. Here, we developed a semi-automated organoid screening method, which we applied to a library of highly specific chemical probes to identify epigenetic regulators of intestinal epithelial biology. The role of epigenetic modifiers in adult stem cell systems, such as the intestinal epithelium, is still undefined. Based on this resource dataset, we identified several targets that affected epithelial cell differentiation, including HDACs, EP300/CREBBP, LSD1, and type I PRMTs, which were verified by complementary methods. For example, we show that inhibiting type I PRMTs, which leads enhanced epithelial differentiation, blocks the growth of adenoma but not normal organoid cultures. Thus, epigenetic probes are powerful tools to study intestinal epithelial biology and may have therapeutic potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...